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ABSTRACT 

First and second order density corrections to the transport 

coefficients of a gas of Lennard-Jones molecules are evaluated 

numerically. The results are based on the formal kinetic theory 

development of Snider and Curtiss as later modified by Snider and 

McCourt. This treatment, in turn, is based on the modification of 

the Boltzmann equation suggested by Green. This modification is an 

approximation to the series development of Bogolubov and Hollinger 

and Curtiss. The numerical methods used in the evaluation of the 

various integrals are discussed, The effect of three body collisions 

on the first density correction term is considered approximately 

through a generalization of the Enskog rigid sphere expression. 
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THE TRANSPORT PROPEKTIES OF AMODERATELY DENSE LENNARD-JONES GAS 

The theory of transport phenomena based on the Boltzmann equation 

applies only to low density gases composed of monatomic molecules, 

It is limited by the basic assumptions of the Boltzmann equation 

which completely ignore three body collisions and require that the 

molecular dimensions be small in comparison with the mean free path. 

In order 

equation 

The 

gases is 

to extend the theory to higher densities the Boltzmann 

must be appropriately modified, 

first attempt to describe the transport properties of dense 

due to Enskog' who studied an idealized system of rigid 

spherical molecules. His treatuent involves a modification of the 

original Boltzmann equation to include two separate effects. 

recognized that due to the finite size of the interacting molecules 

momentum and energy are instantaneously transferred between molecular 

centers on collision, Secondly, he allowed, approximately, for the 

He 

effect of three body collisions by introducing the equilibrium radial 

distribution function Y evaluated at impact separation to describe 

the effect of shielding of a colliding pair by a third molecule, 

For rigid spheres Y at the impact separation is given by the density 

expansion 

where B and C are respectively the second and third virial 

coefficients, and n is the number density. 

- - - - -  
D, Enskog, Kgl. Svenska Vetenskapsakad. Hand1 - 6 3 ,  No, 4 (1922). 
See also Molecular Theory of Gases and Liquids, J. 0. Hirschfelder, 
C. F. Curtiss, and R. B. Bird, page 634 (John Wiley, New York, 1954). 
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The more realistic case of a gas of soft molecules has been dis- 
2 3 cussed by a number of authors, including Bogolubov , Green , and 

Hollinger and Curtiss . 4 These authors separately developed identical 

contributions to the Boltzmann collision integral describing 

collisional transfer. In the limiting case of rigid spheres, these 

t e r m  are identical with the Enskog result when three body effects 

are ignored, by setting Y equal to unity. Bogolubov, and Hollinger 

and Curtiss have developed in addition a term describing the effect 

of three body collisions. 

collision integral lead to contributions of order R 

Both types of corrections to the Boltzmann 

and higher in 

the density expansions of the transport coefficients. 

The three body collision correction term mentioned above is quite 

complicated and has not yet been used in a practical calculation. It 

is possible on the basis of the Enskog theory, however, to approximate 

the effect of three body collisions. The Enskog three body corrections 

to the transport coefficients appear in the linear and higher terms 

of the density expansion. The corrections of order I 2  are 

for the coefficient of thermal conductivity and 

N. Bogolubov, J. Phys. (U.S .S .R. )  l0, 265 (1946). 

H. S. Green, Molecular Theory of Fluids (North Holland Publishing 
Co., Amsterdam 1952). 

H. 8. Hollinger and C. F. Curtiss, J, Chem. Phys. 33, 1386 (1960). 

2 

3 



f o r  

the 

3 

t h e  coe f f i c i en t  of shear v iscos i ty  where Ace’ and 7“’ are 

constant  tenas i n  t h e  densi ty  expansions and B and C are 

respec t ive ly  the recond a d  third r i g i d  sphere v i r ia l  coef f ic ien ts .  

In  his e a r l y  treatment of t h e  problem, Enskog suggested, with 

considerable success, an i n t u i t i v e  method of applying t h e  r i g i d  

sphere r e s u l t s  t o  the  s o f t  po ten t i a l  case. An e s s e n t i a l  point i n  

Enskog’s i n t u i t i v e  modification is  the  evaluat ion of Y i n  terms of 

t h e  equation of s ta te  through the r e l a t i o n  5 

where 6: i s  a function of t he  temperature, T . It is e a s i l y  

shown t h a t  i f  i s  t o  approach uni ty  i n  the  l i m i t  /L 4 0 ,  b: 

must be taken t o  be 

It then follows t h a t  t he  Enskog r e l a t i o n  i s  

A comparison of t h i s  r e s u l t  with the  r i g i d  sphere expression, Eq. 1, 

then suggests t h a t  t he  r e s u l t s  of t he  present  treatment may be 

corrected approximately f o r  the e f f e c t s  of t h ree  body c o l l i s i o n s  by 

replacing the  r a t i o  C/‘B i n  the rigid sphere expressions, 

5 
- - - - -  

See Molecular Theory of Gases and Liquids, J, 0,  Hirschfelder,  
C. F, Curt iss ,  and R. B. Bird (John Wiley, New York, 1954) ,  p. 649,  
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Eqs. 2 and 3, by the ratio 

evaluated for the soft potential. 

the Enskog treatment to the soft molecule czse will be discussed in 

a later paper. 

A more rigorous generalization of 

Livingston and Curtiss' have investigated the question of three 

body corrections to the rigid sphere transport coefficients with 

more rigor than did Enskog. They have obtained further linear 

corrections by considering the perturbation of the radial distribution 

function. These corrections, however, are not easily generalized to 

the 

the 

the 

soft potential case, 

On the basis of Green's collisional transfer modification of 

Boltzmann equation, Snider and Curtiss7 developed expressions for 

corrections to the transport coefficients. . The explicit 

expressions for these collisional transfer density corrections have 

been considered further by Snider and McCourt . 8 They succeeded in 

simplifying appreciably the form of the expressions and showed that 

'certain combinations of the integrals can be evaluated immediately 

in terms of the second virial coefficient and its derivatives. 

For a purely repulsive inverse power potential the remaining integrals - - - - -  
P. M. Livingston and C. Fa Curtiss, Phys. of Fluids, 4 ,  816 (l961). 

R. F. Snider and C. F. Curtiss, Phys. of Fluids, L, 122 (1958); 
I 3, 903 (1960). 

R. F. Snider and F. R. McCourt, Phys. of Fluids, 5, 1020 (1963). 

- 
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were 

case 

evaluated by an interesting expansion about the rigid sphere 

as a limit. 

In the present paper the evaluation of thehtransport coefficients 
d m 8 i  t y  C w C e C t t a u  4. *he 

is considered for a potential function including an attractive as 

well as a repulsive term. Specifically the calculations are based 

on the Lennard-Jones potential defined by 

where 

f (;z) = f l  rr -'t z-'J ( 9 )  

r is the separation distance of the molecules, 6 is the depth 

of the potential minimum, aid f is the separation distance at 

which the potential is zero. 

The basic problem is the numerical evaluation of certain triple 

integrals, the integrands of which depend on functions also obtained 

by numerical integration. 

1. THEORY 

The expressions for the coefficients of thermal conductivity, 

shear and bulk viscosity obtained by Snider and McCourt can be 

written in the form 



and 

in which m is the mass of a molecule, k is the Boltzmann 

bo and c2 are constant, T is the temperature,and 

defined by 

al 

and 

. 

In these expressions, B is the second virial coefficient, 
A f 2 , z l +  is the usual dimensionless viscosity cross-section, 

and N A , T A  , H A  , etc. are triple integrals which are discussed 
in detail later. 
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The expressions for the transport coefficients can also be 

written in the..form of polynomials in the dens i ty ,  . ,  " .  E 
' t  

where 

dilute gas, and the and C 

"transport property virial coefficients" given by 

(O) and I(') are the coefficients in the limit of a 
BA , Be , C, , C ' are the 
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and 

and 
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In  sumarary, t o  determinebthe t r a n s p o r t  c o e f f i c i e n t s  i n  t h e  

present  approximation, f i v e  basic  i n t e g r a l s  F A  , N A  , I, , 
.(HA + R A ) and (Hx + RH ) a te ,  required. Exp l i c i t  expressions 

f o r  these  q u a n t i t i e s  a r e  given by Snider and McCourt and involve 

< 

t r i p l e  in tegra t ions  over the  var iab les  A , g 

is t h e  q e l a t i v e  separat ion of t h e  two co l l id ing  molecules, 

t he  magnitude of t h e i r  r e l a t i v e  ve loc i ty  and 9 - U  

between t h e  associated ’vectors. These va r i ab le s  de f ine  a 

c o l l i s i o n a l  t r a j e c t o r y  and a point along t h i s  t r a j e c t o r y .  

r e su l t .  of the symmetry, t h e  i n t e g r a l s  can be w r i t t e n  as funct ions 

only of t h a t  por t ion  of r e l a t i v e  pos i t ion-ve loc i ty  space defined 

by poin ts  on t h e  incoming port ion of t he  t r a j e c t o r i e s .  

convenient, i n  t he  numerical eva’luat’ion of the d n t e g r a l s  t o  change 

va r i ab le s  from (@, g) t o  (go, g o  ) where go is  the  i n i t i a l  

and tc, where A 
, I  

is 

is t h e  angle 
B 

As a 

I .  

< 

It i s  
, 4  

r e l e t i v e  ve loc i ty  i n  e c o l l i s i o n  and 

c l o s e s t  approach of t h e  p a r t i c l e s .  

uniquely descr ibe  a t r a j e c t o r y  and t h e  remaining va r i ab le  

f i x e s  t h e  posit.ion on $his  t r a j ec to ry .  

expressions it is convenient t o  introduce t h e  dimensionless 

r o  is t he  d i s t ance  of 
7 .  

. , , .  > - \ ,  1 .  

The var iab le$  (go, 9,) 

r 

Before %wr i t ing  these  

” .  
var i ab le s  

, .  

R A+ = /f 



From this point on the explicit exprerrions ate written in terms 

of there dimensionleas variables but f o r  typographical convenience 

the arterirks are cnnttted. 

variables the explicit expressions for the triple integralr are 

In term of there dimensionless 



. 
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:. ( 4 3 )  

(4 5) 

. 

are limited to regions of the relative position-velocity space 

corresponding to non-bound trajectories. In the theory, this results 

from the use of the molecular chaos assumption to derive the 

Boltzmann equation, 

molecules in collision have been separated in their past history, 

Thus, if the treatment is limited to binary collisions, the molecular 

The molecular chaos assumptipn requires that two 
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Numeqically, chaos assumpfi&i'&nnot be used in the bound state region. 

this restrict to^ arl'aes 'because the integrands of those integrals , 

qhich cannot ' b the second virial coefficient 01 its 

temperature derivatives 6ecome unde'fined in the bound state region.. . 

There is a question as to whether to retain the full second virial 

coefficient or limit it also to non-bound state contributions. The 

situation is further complicated by the fact that such terms arise in 

the treatment in two ways. First, the second virial coefficient 

appears in the expression for the equilibrium pressure in which case 

the full coefficient must surely be used. 

integrals reduce to the integral representation of the second virial 

coefficient. 

Since the contributions to the transport coefficients due to the 

bound state region have not been treated in a satisfactory theoretical 

manner, it is difficult at this time to decide how the situation 

Secondly? certain molecular 

It is in the latter case that the difficulty arises, 

should be resolved, In this paper, the full second virial coefficient 

is used wherever it 'appears explicitly. 

In the non-bound region of the relative position-velocity space, 

the limits on the integration variable r are 3* to infinity, 

The,integratianr on q e  and are more complicated. In this 
l imits af 

d 
r @ W C  

case the,,integration is restricted as indicated in figure 1. 

Region I is excluded from the integration since here the total energy 

which is measured is less than the potential energy given by s-' 
8fG) . Region I1 is excluded since it is the region of bound 

states. Points along the limiting curve a represent head on 

collisions where there is no rotational kiTletic energy. Points near 
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the  boundary curve c represent  t r a j e c t o r i e s  i n  which t h e  p a r t i c l e s  

approach each o ther  and then o r b i t  a la rge  number of times before 

f i n a l l y  separat ing,  

i s  s l i g h t l y  less than the  maximum i n  the  e f f e c t i v e  p o t e n t i a l  energy 

curve a s  i l l u s t r a t e d  i n  f igu re  2. Points  near curve b a l s o  

represent as orbiting s i tua t ion .  

s l i g h t l y  g rea t e r  than the  maximum i n  the  e f f e c t i v e  pQtent ia1  energy 

curve. 

together  through the  minfmurn i n  t h e  e f f e c t i v e  p o t e n t i a l  energy, then 

go back out f o r  a second long period of o r b i t i n g  before they f i n a l t y  

separate .  In both o r b i t i n g  s i t u a t i o n s  the  t r a j e c t o r y  becomes near ly  

t= These poin ts  correspond t o  c o l l i s i o n s  where 

is f.t However, i n  t h i s  case 

After o r b i t i n g  f o r  some t i m e ,  t h e  p a r t i c l e s  i n  t h i s  case f a l l  

circular ( i ,e . ,  the  r a d i a l  ve loc i ty  becomes near ly  rero) at a value 

of r corresponding t o  t h e  maximum i n  t h e  e f f e c t i v e  p o t e n t i a l  

energy curve, From f igu re  1 it is  seen t h a t  f o r  values of 

less than a c r i t i c a l  value t h e  in t eg ra t ion  over 

(38), (39) and (40) must be car r ied  out i n  two par t s .  

is f i r s t  from a t o  b , then from c t o  i n f i n i t y .  For 

grea te r  than the c r i t i ca l  value t h e  range of t he  values of 

va r i ab le  fi extends continuously from a t o  i n f i n i t y .  

r 
i n  (36), (37), 

The in t eg ra t ion  

Yo 

The in t eg ra l s  Q , p , and r3 are c lose ly  r e l a t ed  

t o  the  in t eg ra l s  which give the time elapsed during c o l l i s i o n  and 

the  t o t a l  angle of de f l ec t ion ,  The quant i ty  @[~.,f.,f) which 

appears i n  the denominator of the  integrand can e a s i l y  be shuwn t o  be 

is t h e  magnitude of t he  r a d i a l  component of the  ve loc i ty ,  
where 96 
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is zero and thus the re  is a pole i n  t h e  df A t  a tu rn ing  point 

integrand of e , p , x and W a t  f -s fo , I n  

general  t h i s  pole causes no d i f f i c u l t y .  However, f o r  values of 

1. and r. corresponding t o  po in t s  on e i t h e r  t h e  curves 4 

o r  c and when has t h e  value corresponding t o  t h e  r a d i a l  

separa t ion  a t  t he  maximum i n  the e f f e c t i v e  p o t e n t i a l  curve, t h e  

o r b i t  i s  c i r c u l a r  and both zr and i f s  t i m e  de r iva t ive  are zero. 

This i s  s u f f i c i e n t  t o  cause divergence of t he  i n t e g r a l s  e , p, 
, and L3 on t h e  curves b and c . Fortunately t h e  

divergence of these  q u a n t i t i e s  does not e f f e c t  t he  absolute conver- 

gence of t he  i n t e g r a l s  defined by ( 3 6 ) ,  ( 3 7 ) ,  ( 3 8 ) ,  ( 3 9 )  and ( 4 0 ) .  

This i s  ensured by the  presence of t h e  f a c t o r  H ( J ~ , & ) .  It does, 

however, introduce computational d i f f i c u l t i e s  and it i s  convenient 

i n  the  f, 

t o  i n t e g r a t e  from a t o  b- $, , and from c C & t o  i n f i n i t y  

where d, , and C& are small, ad jus t ab le  parameters. By 

numerical experimentation, i t  was found t h a t  tak ing  

and e& = / O  e s s e n t i a l l y  eliminates the  d i f f i c u l t y  i n  t h e  

eva lua t ion  of t he  t r i p l e  in tegra ls .  

in tegra t ion ,  f o r  values of 3" below the  c r i t i c a l  value, 

-5 4 = /@ 

-3 

Again a minor d i f f i c u l t y  was 

encountered due t o  t h e  presence of a pole i n  t h e  in t eg ra t ion  a t  

4 = fe due t o  t h e  f a c t o r  g ( p o ,  & , , A )  . This was t r ea t ed  

i n  t h e  sane manner as t h e  poles i n  t h e  i n t e g r a l s  ( 4 3 )  - ( 4 6 ) .  The 

d e t a i l s  of t h e  in t eg ra t ion  iiiethods sre discnssed below, 
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~- 

Fig. 2 

The effective potential function, - 
for an orbiting angular momentum 
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2. NUMERICAL MBTHODS 

Since the integrals (36) - (40) are s%milar in form, it is 

convenient tc-descrtbe the numerical metbod used to compute a typical 

quantity 

The integration can be represented in the following manner 

where 

in which 

IS> 
(". , f., -4,) It is noted that in the general case the integrand 

depends on the functions ( 4 3 )  - ( 4 6 ) .  

be determined by numerical integration, 

These quantities must also 

Vith the definitions 
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. .  . ?  

and 
. i * ,  

. I  . .,  

. 

, p , and o can be rewritten in the form e the integrals 
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and 

I 2  The in t eg ra l s  Il and I3 are independent of A whereas 

and I4 depend on a l l  t h ree  va r i ab le s  1. , fc , A . The values 

of I2 and I were required a t  each of t h e  quadrature poin ts  A; 

used i n  evaluating (50) .  

4 
A t y p i c a l  i n t e g r a l  from a4- t o  i n f i n i t y  was 

computed by sunming the  cont r ibu t ions  from each interval (.e,' ~ a,+,) +' 

where 

r i g h t  hand s i d e  of (59)wereexpressed as i n t e g r a l s  from -1 

and== evaluated with Gause' quadrature formula . I n  t h e  eva lua t ion  

of each of t he  in t eg ra l s ,  t he  16 point Gauss formula was used. To 

ob ta in  Il and I3 , i n t e g r a l s  from re t o  A, are required. 

Since t h e  integrands i n  t h i s  case have a pole a t  t h e  lower l i m i t  it 

i s  no longer po r s ib l e  t o  use the  Gauss formula. 

a simple change of va r i ab le  t h e  i n t e g r a l s  can be expressed i n  t h e  form 

is t h e  l a r g e s t  p i v o t a l  point,  The ind iv idua l  terms on t h e  

t o  1 
9 

However, introducing 

. 

where t h e  pole o r i g i n a l l y  a t  #'" is now at  t h e  point y = -1, and 

t h e  function { t g )  is f i n i t e  and well behaved throughout t h e  
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Under these conditions t h e  numerical i n t e g r a t i o n  range of in tegra t ion .  

is t r a c t a b l e  and can be ca r r i ed  out by use of a quadrature formula 

due t o  Mehler , 9 

This is a p a r t i c u l a r  case of a more general  quadrature i n  which t h e  

weight func t ion  has t h e  form 

where 0c and f are any numbers g rea t e r  than -1. It i s  seen 

t h a t  t h e  usual Gauss formula r e s u l t s  on s e t t i n g  

I n  t h e  eva lua t ion  of t h e  in t eg ra l s  I1 and Ig , 16 poin ts  were 

o( I g = 0 

used i n  t h e  Mehler integration. 

As pointed out earlier the integrand i n  (50) has a pole a t  

= . I n  order t o  obtain accura te  r e s u l t s  both Mehler and 

Gauss formulae were employed, t h e  d i v i s i o n  point being a r b i t r a r i l y  

chosen a t  J 2 J', . I n  t h e  Mehler i n t eg ra t ion  32 poin ts  were 

used and i n  t h e  Gauss in t eg ra t ion  16 po in t s  were used, The range of 

t h e  va r i ab le  i n  t h e  i n t e g r a l  ( 4 9 )  has been discussed i n  Section 1. 

Depending on whether J o  

w e  r equ i r e  

i s  less o r  g r e a t e r  than t h e  c r i t i c a l  value 
V 

2, Kobal, Numerical Analysis (John Wiley, New York, 1961). 
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a 

After  appropriate change of var iable ,  each i n t e g r a l  can be expressed 

i n  the  form 
/ 

-/ 

They were then evaluated using a 16 point Gauss quadrature, 

The i n t e g r a l  (48)  may be expressed as 

which can be approximated by the  summation 

where t h e  points  z, are the  zeros of t he  Pf order  Laguerre 

polynomial L,,,,tx) . The weight coe f f i c i en t s  are given by 

Values of f a  and w d  are tabulated f o r  a wide range of M 

by Rabinowitz and Weiss . 
the  number of Laguerre points  Pf was taken t o  be 4 8 .  It was found, 

10 
I n  t h e  eva lua t ion  of t hese  in t eg ra l s ,  

however, tha t  i n  each case t h e  funct ion I[%’) decreased s u f f i c i e n t l y  

rap id ly  with Z t h a t  i t  was necessary t o  r e t a i n  only t h e  f i r s t  18 

t_eyms_ jn- the sum (67). 

lo P. Rabinowitz and G. Weiss, Math. Tab. , Wash. 2, 285 (1959). 
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3. NUMERICAL RESULTS 'AND OONCLUSIONS 

,. The Irummical e a l u a t i o n  of the* var ious  i n t e g r a l s  has been 

carr ied  out  oh a CBC 1604 ter : . The ' evaZuat i 
*L x 

"transport  property second' v i r ia l  coeff ic ients" ,  B* and BA 

and of t h e  If t h i r d  v i r i a l  coeff ic ients"  

p a r t i c u l a r  temperature required 15 t o  20 minutes of computing t i m e .  

For smaller T values, as a r e s u l t  of t h e  f a c t o r  exp(- 7) i n  

(36) - (40 ) ,  values of 

increasingly important, and the  operating t i m e  of the  program 

' c* and c A  at a 

2 
g0  

below t h e  c r i t i ca l  value became g0 

increased accordingly. These f ive  coe f f i c i en t s  were evaluated a t  

s ix  widely spaced values of t he  ,reduced temperature. The r e s u l t s  

are given i n  the  t a b l e  and i l l u s t r a t e d  i n  the f igures .  
* f 

The values of 8 and 8, were corrected approximately f o r  

t h e  e f f e c t  of t h r e e  body co l l i s ions  i n  t h e  manner described i n  t h e  

introduct ion.  

and f igures .  

1 

These "corrected" values are a l s o  given i n  the  t a b l e  

The e f f e c t  'of pressure on the  t ranspor t  coe f f i c i en t s  has been 
11 

discussed previously by Stogryn and Hirschfe'lder . Thei r  study i s  

based l a rge ly  on t h e  e f f e c t  of s t a b l e  and metastable bound p a i r s  of 

molecules. Thei r  r e s u l t s  f o r  monatomic gases are a l so  i l l u s t r a t e d  

i n  t h e  f igures .  These authors compared t h e i r  r e s u l t s  with experimental 

measurements of t he  pressure dependence of the  t ranspor t  ' coe f f i c i en t s ,  

Their  reduced values of the  second v i r i a i  coefficients zre indicated 

i n  the  f igu res  by c i r c l e s .  

12 . . - -  Recently, Flynn, Hanks, Lemaire, and Ross have determined the  

"-D. E. Stogryn and J. 0. Hirschfelder,  J. Chem. Phys., 3 l ,  1531 

l2 G. P. Flynn, R. V. Hanks, N. A. Lemaire, and J. Ross, J. Chem. Phys., 

(1959) ; 33, 942 (1960). 

- 38, 154 (1963). 
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viscosity of He, Ne, Ar, and N 

temperatures. 

which they obtained from their measured values, have been converted 

to reduced values using as potential constants, for He, e /k = 10.8 

and V = 2.57 A; for Ne, 4 /k = 33.7 and 6 = 2.576 A ; for Ar, 

as functions of the density at four 2 
The values of the viscosity second virial coefficient, 

C /k = 119.5 as2 

Q = 3.681 A. The resulting values of 

= 3.409 A; and for N2, d /k = 91.5 and 

are indicated in Fig. 3 B: 
by squares. 

From the law of corresponding states one would expect the 

reduced experimental values given in the figures to lie on smooth 

curves. 

points is an indication of the experimental uncertainty. The experi- 

mental points in the high temperature region tend to indicate that 

the correction for the effects of three body collisions is larger 

than that indicated by the approximate correction w e d  in the 

present discussion, 

will be discussed in a later paper. 

low temperature region indicate that either the correction is of 

opposite sign or substantial disagreement will remain, 

may be due to the effect of bound pairs of molecules. 

in the previous discussion, this problem, which is of more importance 

at lower temperatures, has not been properly treated in the 

theoretical development. 

For this reason, it i s  probable that the scatter of the 

A more rigorous evaluation of this correction 

The experimental points in the 

This difficulty 

As indicated 

. 
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TABLE OF VAulES OF THE TRANSPORT PROPERTY V I R I A L  COEFFICIENTS 
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Fig. 3 The reduced*"second v i r i a l  coeff ic ient"  f o r  v i scos i ty .  The th ree  
curve3 are a) B q ,  t h e  quant i ty  computed according t o  Eq. 21, 
b) (BZ)c, t h e  l a t te r  quant i ty  corrected approximately f o r  the  e f f e c t  
o f  t h ree  body c o l l i s i o n s  according t o  Eq. 7,  c) values computed by 
Stogryn aiid Hirschfelder  . The circles are reduced experiuieuLa1 Yalues 
given by Stogryn and Hirschfelder l l .  
experimental values of Flynn, Hanks, Lemaire, and Rossl2. 

il 
The squares are based on t h e  
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10 
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Fig. 4 

The three curves are a) 
Eq. 19, b) (B:)s, the latter quantity corrected approximately for 
the e f f ec t  of three body collisions,  ccording t o  Eq. 7 ,  c) values 
coiiputed by Stogryn and Hirschfelder . The points are experimental 
values. 

The reduced "second v ir ia l  coefficient" for thermal conductivity. 
B; , the quantity computed according t o  

18 


